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ABSTRACT

e We are interested in the recovering of unobserved
or partially observed image from noisy data. This
problem is a cornerstone in imaging science and some
canonical examples are : image denoising, deconvolution,
super-resolution, inpainting or tomographic reconstruction,

etc.

e We use Markov Chain Monte Carlo methods to
compute an estimator of the original image and a sta-
tistical summary of the posterior distribution. We de-
velop an adaptive framework to increase performance
and autonomy.

FULLY ADAPTIVE PROXIMAL LANGEVIN ALGORITHM

Metropolis-Hastings scheme [1] [3]
— Drift :
1

D) — —Vlo(x(k)) + X (Uprox2 (Uch(k)) — 5’((’“))

— Sample a perturbation : W) ~ A/(0, ()

— Compute a candidate :
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— Compute the acceptance probability :
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— Set x(*+t1) = x* with probability ozf\k)

Update parameters [2]
— Adaptive step-size :
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— Update mean and covariance estimates :
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Stopping criterion
— Effective Sample Size [4]
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INTRODUCTION

e Markov Chain Monte Carlo (MCMC) methods are
well known as a key tool for statistical data analysis,
from signal processing to biology or economics.

e In image processing, the objects we deal with are
likely high-dimensional and classical samplers may
fail to scale up.

e Langevin-based Monte Carlo samplers (LMC) are
very effective in high-dimensional setting because
Langevin dynamics consist in the trade-off between
random walk and gradient mapping.

THEORETICAL AND EXPERIMENTAL RESULTS

Convergence guaranties

The fully adaptive Proximal Langevin algorithm is a
special case of Metropolis Adjusted Langevin Algo-
rithm (MALA) which target 7* a A\—approximamation
of m. It is guaranteed to converge ergodically if :

Condition 1. The density 7 is positive with continu-
ous first derivative such that
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If 7 has a polynomial form Pg such as g(x) = 7||x]||” :

Proposition 1. Condition (1) is satisfied if one of the
following hold :
1. exp(—I(x)) € Ps, and exp(—h(x)) € Pgs,, such as
By > 2 > 1 > 0or max(fSq,82) > 2is even
2. 7 is strongly log-concave

It is also possible to target 7w directly by substituting =
to 7 in the acceptance probability. The algorithm con-

verges if m € C* and we conjecture that it also converges
ergodically if prop 1. is satisfied.

FUTURE RESEARCH

e Further the canonical application of deconvolution,
we have been investigating a few applications such as
target detection in MRI (of the round gray areas) with
confidence interval tests in highest posterior density re-
gions.

e [tis also of interest to perform hypothesis testing and
prior selection, that we have experimented through
Bayes Factor and harmonic mean estimators (HME).
HME is not a robust estimator and the convergence and

QE

y = Hx+n

y is the noisy observation, x is the image to recover, n
is the noise and H is a linear operator.

e The posterior distribution is given by Bayes formula
m(x) = p(y|x)p(x)/p(y) to add prior information to the
likelihood
m(x) = exp{—g(x)}/ko

e g(x) = I(x) + h(x) is the convex potential :

Experimental mixing improvement
Comparison of the improvement in the autocorrelation
(after 10° iterations) : (a) RWM, (b) MYMALA, (c) adap-
tive step-size (only) MYMALA, (d) fully adaptive MY-
MALA.
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Representation of the distribution smallest and the biggest
eigenvectors of a 16 384—dimensional target

The Effective Sample Size N° is the equivalent num-

ber of independent sample, and the ratio N° /N is,
for each method : 1.97 x 107°,2.32 x 107°, 5.46 x 10~°
and for the proposed algorithm 2.32 x 10~

approximation bias are still open questions.

e Convergence of a Monte Carlo algorithm is never an
easy question, and we could not give sufficient proofs
to ensure the exact and adaptive proximal-MALA to be
ergodic. Even though, [5] gives strong intuition that it
would converge to the exact posterior and we already
have encouraging results on Langevin diffusion con-
vergence.
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(i1) [ : R™ — R is convex, continuously differentiable
and gradient Lipschitz with Lipschitz constant L,
(iii) A : R® — (—o0,+o0]| is strictly convex, lower
semi-continuous (l.s.c) and Lipschitz (I'y)
e Moreau approximation :
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(sub)—gradient mapping (a.k.a proximal mapping) :
-lp:
proxi‘b(x) = argmin {f(x) | ||11 XH }

CONCLUSION

e We have proposed here a fully adaptive Langevin
scheme which drastically improves the performances
reached by more classical algorithms such as Random
Walk Metropolis, MALA or proximal-MALA, in terms
of sample correlation and computing time. This let
scale up Monte Carlo methods to image processing
problems to perform a descriptive statistical summary.

o Application for medical image processing
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MRI deconvolution and denoising

e Moreau approximation and proximal mapping
broaden the class of density to non-smooth targets
with convergences and ergodicity guaranties.

e These targets are more and more present due to regu-
larisation methods, such as in the total variation (TV)
prior, where the likelihood is Gaussian and the prior
on x is of the form ¢g(x) = ||Vx||1, which is piecewise
differentiable.
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