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ABSTRACT

• We are interested in the recovering of unobserved
or partially observed image from noisy data. This
problem is a cornerstone in imaging science and some
canonical examples are : image denoising, deconvolution,
super-resolution, inpainting or tomographic reconstruction,
etc.

• We use Markov Chain Monte Carlo methods to
compute an estimator of the original image and a sta-
tistical summary of the posterior distribution. We de-
velop an adaptive framework to increase performance
and autonomy.

INTRODUCTION

• Markov Chain Monte Carlo (MCMC) methods are
well known as a key tool for statistical data analysis,
from signal processing to biology or economics.

• In image processing, the objects we deal with are
likely high-dimensional and classical samplers may
fail to scale up.

• Langevin-based Monte Carlo samplers (LMC) are
very effective in high-dimensional setting because
Langevin dynamics consist in the trade-off between
random walk and gradient mapping.

MODEL

y = Hx + n

y is the noisy observation, x is the image to recover, n
is the noise and H is a linear operator.
• The posterior distribution is given by Bayes formula
π(x) = p(y|x)p(x)/p(y) to add prior information to the
likelihood

π(x) = exp{−g(x)}/κ0

• g(x) = l(x) + h(x) is the convex potential :

(i) lim||x||→∞g(x) = +∞
(ii) l : Rn → R is convex, continuously differentiable

and gradient Lipschitz with Lipschitz constant Ll
(iii) h : Rn → (−∞,+∞] is strictly convex, lower

semi-continuous (l.s.c) and Lipschitz (Γ0)
•Moreau approximation :

πλ(x) = sup
u∈Rn

e−
||u−x||22

2λ
−h(u)e−l(x)/κλ

(sub)–gradient mapping (a.k.a proximal mapping) :

proxλh(x) = argmin
x∈Rn

{
f(x) +

||u− x||2

2λ

}
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FUTURE RESEARCH

• Further the canonical application of deconvolution,
we have been investigating a few applications such as
target detection in MRI (of the round gray areas) with
confidence interval tests in highest posterior density re-
gions.
• It is also of interest to perform hypothesis testing and
prior selection, that we have experimented through
Bayes Factor and harmonic mean estimators (HME).
HME is not a robust estimator and the convergence and

approximation bias are still open questions.
• Convergence of a Monte Carlo algorithm is never an
easy question, and we could not give sufficient proofs
to ensure the exact and adaptive proximal-MALA to be
ergodic. Even though, [5] gives strong intuition that it
would converge to the exact posterior and we already
have encouraging results on Langevin diffusion con-
vergence.
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CONCLUSION

• We have proposed here a fully adaptive Langevin
scheme which drastically improves the performances
reached by more classical algorithms such as Random
Walk Metropolis, MALA or proximal-MALA, in terms
of sample correlation and computing time. This let
scale up Monte Carlo methods to image processing
problems to perform a descriptive statistical summary.

• Application for medical image processing

MRI deconvolution and denoising

• Moreau approximation and proximal mapping
broaden the class of density to non-smooth targets
with convergences and ergodicity guaranties.

• These targets are more and more present due to regu-
larisation methods, such as in the total variation (TV)
prior, where the likelihood is Gaussian and the prior
on x is of the form g(x) = ||∇x||1, which is piecewise
differentiable.

FULLY ADAPTIVE PROXIMAL LANGEVIN ALGORITHM

Metropolis-Hastings scheme [1] [3]
– Drift :

D̊(k) = −∇̊l(x(k)) +
1

λ

(
Uproxλh

(
UT x̊(k)

)
− x̊(k)

)
– Sample a perturbation : W̊ (k) ∼ N (0,Γ(k))
– Compute a candidate :

x̊∗ = x̊(k) +
δ(k)

2
Γ(k)D(̊x(k)) +

√
δW̊ (k)

– Compute the acceptance probability :

α
(k)
λ = min

{
1;

πλ(x∗)q(x(k)|x∗)
πλ(x(k))q(x∗|x(k))

}
– Set x(k+1) = x∗ with probability α(k)

λ

Update parameters [2]
– Adaptive step-size :

δ(k) = Pδ

{
δ(k−1)

(
1 + ι(k)(α

(k)
λ − αopt)

)}
– Update mean and covariance estimates :

µ̊(k) = µ̊(k−1) + ι(k)
(
x̊(k) − µ̊(k−1)

)
Γ
(k)
0 i,i = Γ

(k−1)
0 i,i + ι(k)

((
x̊
(k)
i − µ̊

(k)
i

)2
− Γ

(k−1)
0 i,i

)
Stopping criterion
– Effective Sample Size [4]

THEORETICAL AND EXPERIMENTAL RESULTS

Convergence guaranties
The fully adaptive Proximal Langevin algorithm is a
special case of Metropolis Adjusted Langevin Algo-
rithm (MALA) which target πλ a λ–approximamation
of π. It is guaranteed to converge ergodically if :

Condition 1. The density πλ is positive with continu-
ous first derivative such that

lim
||x||→∞

− x
||x||∇g(x) = −∞ (Coercivity)

lim sup
||x||→∞

− x
||x||

∇g(x)
||∇g(x)|| < 0 (Curvature)

If π has a polynomial form Pβ such as g(x) = γ‖x‖β :

Proposition 1. Condition (1) is satisfied if one of the
following hold :

1. exp(−l(x)) ∈ Pβ1 and exp(−h(x)) ∈ Pβ2 , such as
β2 ≥ 2 ≥ β1 > 0 or max(β1, β2) ≥ 2 is even

2. π is strongly log-concave
It is also possible to target π directly by substituting π
to πλ in the acceptance probability. The algorithm con-
verges if π ∈ C2 and we conjecture that it also converges
ergodically if prop 1. is satisfied.

Experimental mixing improvement
Comparison of the improvement in the autocorrelation
(after 106 iterations) : (a) RWM, (b) MYMALA, (c) adap-
tive step-size (only) MYMALA, (d) fully adaptive MY-
MALA.

Representation of the distribution smallest and the biggest
eigenvectors of a 16 384–dimensional target

The Effective Sample Size N eff is the equivalent num-
ber of independent sample, and the ratio N eff/N tot is,
for each method : 1.97× 10−5, 2.32× 10−5, 5.46× 10−5

and for the proposed algorithm 2.32× 10−4.


