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Introduction and motivations

Proposed Parallel Calibration Algorithm

e Radio astronomy Is currently making a technological transition toward the
use of larges radio interferometers [1].

e Calibration 1s a mandatory task, otherwise strong distortions would appear
during imaging.

e [ he proposed calibration algorithm estimates the positions of the calibrators,
the gains of the array elements and their noise powers, In a parallel manner,
and benefits from coherence across wavelength to improve calibration.

Data model and problem statement

different perturbations are intro-
duced along each source signal path
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Figure 1: considered scenario (left) and calibrator assumptions (right)

1. Model of the covariance matrix

e The scenario corresponding to Figure 1 (left) is considered, i.e., the antennas
have directional complex responses and the propagation mediums (mainly the
ionosphere) cause different shifts for each calibrator position.

e In recent and future interferometers, the observations consist in a perturbed
version of the covariance matrix Ry of the P antenna signals, which depends
on the wavelength A, and Is given by

1 1\F
R, = GAADAZ&M)\ (GAADAZ&) + RUA + Zi - CPXP, In which (1)

1. Gy = diag (gy) € C*" models the undirectional antenna gains
2. The steering matrices Ap, are functions of the positions D, of Q calibrators
3.2, = diag (o) represents the real and known real powers of the calibrators

4. The directional amplitude gains toward calibrators are stacked in M, =
diag (my) € R®*Q

5. R} is the covariance matrix of non-calibration sources (background noise)

6. X" = diag (o) € RY*Y contains the antenna noise powers
A A

2. Model effects of the wavelength

e \/\Ve assume that the antennas and source parameters of the covariance matrix
are wavelength dependent. Specifically:

— g, has smooth variations across wavelength, representing by g, = Ba,
where By € R7*%" is a basis and a € CX" is the smooth parameter.

—m,, is proportional to A\™2 and the position shifts are proportional to \~.
— Calibrators are well separated (see Figure 1, right).

3. Problem statement
e The aim of calibration is the estimation of {g, D,, my, 65 }xca, from the

J > K sample covariance matrices {I?{x}x@\, where A represents the set of

the J avallable wavelengths.
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e [ he proposed algorithm estimates the parameters in an iterative manner:

Until convergence repeat
1. Estimate {gA}AeA

- f
2. Estimate {Dy, my, UIAI}AGA

1. Estimation Of{gk}xe/\

e [ his step considers the following minimization problem

&, {9x}rep = argmin Z ”ﬁx — R (QA)”i = Z Kx (9))

9N AeA e AEA
subject to gy = Bya, VA € A

(2)

e (2) is reformulated as a consensus problem by use of ADMM |[2]

elt minmizes In a parallel manner the augmented Lagrangian
L ({gx Yatren @) = Donen La (90, Yo, a), by use of the following updates:

g\ =argmin L, (gk, yl, a[t]) A EA, (3)
g
a1 = arg min Z Ly (ggﬂ], yE’L], a) , (4)
. AEA
update the Lagrange multiplier yE’LH], AEA (5)

: : n
2. Estimation Of{DA, my, UA}AE/\

e [ his step estimates jointly the positions Dy and the gains my, by reformu-
lating the problem as a sparse problem:

— It substitutes my by a large vector my, that represents the amplitudes for
a large number of positions, and only the values of m, corresponding to
the apparent positions of the calibrators are non-zero elements

—the efficient and parallel procedure to solve the reformulated problem s
based on Distributed Iterative Hard Thresholding [3]

Simulation results

e Realistic simulations are performed in a low Signal-to-Noise Radio scenario.

e [ he variances of the errors are closed to the Crameéer-Rao bounds, showing
the proposed scheme Is statistically efficient and robust to non-calibration
Sources.
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