

Advanced Calibration Methods for the Radio Astronomy context

TECHNISCHE UNIVERSITÄT DARMSTADT

Martin Brossard^{a,b}, Mohammed Nabil El Korso^c, Marius Pesavento^b, Rémy Boyer^d, Pascal Larzabal^e and Stefan Wijnholds^f

^aENS Cachan, France; ^bNachrichtentechnische Systeme, Germany; ^cUniversité Paris Ouest Nantere La défense, France; ^dL2S, Gif-Sur-Yvette, France; ^eSATIE, France; ^fASTRON, The Netherlands

Introduction and motivations

Proposed Parallel Calibration Algorithm

- Radio astronomy is currently making a technological transition toward the use of larges radio interferometers [1].
- Calibration is a mandatory task, otherwise strong distortions would appear during imaging.
- The proposed algorithm estimates the parameters in an iterative manner:
 - **Until** convergence repeat 1. Estimate $\left\{ \mathbf{g}_{\lambda}
 ight\}_{\lambda \in \Lambda}$
- The proposed calibration algorithm estimates the positions of the calibrators, the gains of the array elements and their noise powers, in a parallel manner, and benefits from coherence across wavelength to improve calibration.

Data model and problem statement

- 2. Estimate $\{\mathbf{D}_{\lambda}, \mathbf{m}_{\lambda}, \boldsymbol{\sigma}_{\lambda}^{n}\}_{\lambda \in \Lambda}$ 1. Estimation of $\{\mathbf{g}_{\lambda}\}_{\lambda \in \Lambda}$
- This step considers the following minimization problem

$$\hat{\boldsymbol{\alpha}}, \{\hat{\boldsymbol{g}}_{\lambda}\}_{\lambda \in \Lambda} = \underset{\boldsymbol{\alpha}, \{\boldsymbol{g}_{\lambda}\}_{\lambda \in \Lambda}}{\arg\min} \sum_{\lambda \in \Lambda} \left\| \hat{\boldsymbol{R}}_{\lambda} - \boldsymbol{R}_{\lambda} (\boldsymbol{g}_{\lambda}) \right\|_{2}^{2} = \sum_{\lambda \in \Lambda} \kappa_{\lambda} (\boldsymbol{g}_{\lambda})$$
subject to $\boldsymbol{g}_{\lambda} = \boldsymbol{B}_{\lambda} \boldsymbol{\alpha}, \forall \lambda \in \Lambda$
(2)

 \bullet (2) is reformulated as a consensus problem by use of ADMM [2] minimizes a parallel manner the augmented Lagrangian • It in $L(\{\mathbf{g}\})$

$$\{\lambda, \mathbf{y}_{\lambda}\}_{\lambda \in \Lambda}, \boldsymbol{\alpha} \} = \sum_{\lambda \in \Lambda} L_{\lambda} (\mathbf{g}_{\lambda}, \mathbf{y}_{\lambda}, \boldsymbol{\alpha}), \text{ by use of the following updates:}$$

$$\mathbf{g}_{\lambda}^{[t+1]} = \arg\min_{\mathbf{g}_{\lambda}} L_{\lambda}\left(\mathbf{g}_{\lambda}, \mathbf{y}_{\lambda}^{[t]}, \boldsymbol{\alpha}^{[t]}\right), \lambda \in \Lambda,$$
(3)

$$\boldsymbol{\alpha}^{[t+1]} = \arg\min_{\boldsymbol{\alpha}} \sum_{\lambda \in \Lambda} L_{\lambda} \left(\mathbf{g}_{\lambda}^{[t+1]}, \mathbf{y}_{\lambda}^{[t]}, \boldsymbol{\alpha} \right), \tag{4}$$

update the Lagrange multiplier
$$\mathbf{y}_{\lambda}^{[t+1]}$$
, $\lambda \in \Lambda$ (5)

2. Estimation of
$$\{\mathbf{D}_{\lambda}, \mathbf{m}_{\lambda}, \boldsymbol{\sigma}_{\lambda}^{n}\}_{\lambda \in \Lambda}$$

- Figure 1: considered scenario (left) and calibrator assumptions (right)
- 1. Model of the covariance matrix
- The scenario corresponding to Figure 1 (left) is considered, i.e., the antennas have directional complex responses and the propagation mediums (mainly the ionosphere) cause different shifts for each calibrator position.
- In recent and future interferometers, the observations consist in a perturbed version of the covariance matrix \mathbf{R}_{λ} of the *P* antenna signals, which depends on the wavelength λ , and is given by

$$\mathbf{R}_{\lambda} = \mathbf{G}_{\lambda} \mathbf{A}_{\mathbf{D}_{\lambda}} \mathbf{\Sigma}_{\lambda}^{\frac{1}{2}} \mathbf{M}_{\lambda} \left(\mathbf{G}_{\lambda} \mathbf{A}_{\mathbf{D}_{\lambda}} \mathbf{\Sigma}_{\lambda}^{\frac{1}{2}}
ight)^{\mathsf{H}} + \mathbf{R}_{\lambda}^{\cup} + \mathbf{\Sigma}_{\lambda}^{n} \in \mathbb{C}^{P imes P}$$
, in which (1)

- 1. $\mathbf{G}_{\lambda} = \text{diag}(\mathbf{g}_{\lambda}) \in \mathbb{C}^{P \times P}$ models the undirectional antenna gains
- 2. The steering matrices $\mathbf{A}_{\mathbf{D}_{\lambda}}$ are functions of the positions \mathbf{D}_{λ} of Q calibrators
- 3. $\Sigma_{\lambda} = \text{diag}(\sigma_{\lambda})$ represents the real and known real powers of the calibrators
- 4. The directional amplitude gains toward calibrators are stacked in M_{λ} = diag $(\mathbf{m}_{\lambda}) \in \mathbb{R}^{Q \times Q}$
- 5. $\mathbf{R}^{\cup}_{\lambda}$ is the covariance matrix of non-calibration sources (background noise) 6. $\Sigma_{\lambda}^{n} = \text{diag}(\boldsymbol{\sigma}_{\lambda}^{n}) \in \mathbb{R}^{Q \times Q}$ contains the antenna noise powers

- This step estimates jointly the positions \mathbf{D}_{λ} and the gains \mathbf{m}_{λ} , by reformulating the problem as a sparse problem:
 - -it substitutes \mathbf{m}_{λ} by a large vector $\tilde{\mathbf{m}}_{\lambda}$, that represents the amplitudes for a large number of positions, and only the values of $\tilde{\mathbf{m}}_{\lambda}$ corresponding to the apparent positions of the calibrators are non-zero elements
 - -the efficient and parallel procedure to solve the reformulated problem is based on Distributed Iterative Hard Thresholding [3]

Simulation results

• Realistic simulations are performed in a low Signal-to-Noise Radio scenario.

• The variances of the errors are closed to the Cramèr-Rao bounds, showing the proposed scheme is statistically efficient and robust to non-calibration sources.

2. Model effects of the wavelength

• We assume that the antennas and source parameters of the covariance matrix are wavelength dependent. Specifically:

- $-\mathbf{g}_{\lambda}$ has smooth variations across wavelength, representing by $\mathbf{g}_{\lambda} = \mathbf{B}_{\lambda} \boldsymbol{\alpha}$, where $\mathbf{B}_{\lambda} \in \mathbb{R}^{P \times KP}$ is a basis and $\boldsymbol{\alpha} \in \mathbb{C}^{KP}$ is the smooth parameter.
- $-\mathbf{m}_{\lambda}$ is proportional to λ^{-2} and the position shifts are proportional to λ^{2} .
- Calibrators are well separated (see Figure 1, right).
- 3. Problem statement
- The aim of calibration is the estimation of $\{\mathbf{g}_{\lambda}, \mathbf{D}_{\lambda}, \mathbf{m}_{\lambda}, \boldsymbol{\sigma}_{\lambda}^{n}\}_{\lambda \in \Lambda}$, from the $J \geq K$ sample covariance matrices $\{\widehat{\mathbf{R}}_{\lambda}\}_{\lambda \in \Lambda}$, where Λ represents the set of the J available wavelengths.

Bibliography

[1] M. P. Van Haarlem, M. W. Wise, A. W. Gunst, et. al., "LOFAR: The LOw-Frequency ARray," Astronomy & Astrophysics, vol. 556, 2013.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundation and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.

[3] S. Patterson, Y. C. Eldar, and I. Keidar, "Distributed compressed sensing for static and time-varying networks," IEEE Transactions on Signal Processing, vol. 62, no. 19, pp. 4931-4946, 2014.