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Advanced Calibration Methods
for the

Radio Astronomy context

Introduction and motivations

•Radio astronomy is currently making a technological transition toward the
use of larges radio interferometers [1].

• Calibration is a mandatory task, otherwise strong distortions would appear
during imaging.

•The proposed calibration algorithm estimates the positions of the calibrators,
the gains of the array elements and their noise powers, in a parallel manner,
and benefits from coherence across wavelength to improve calibration.

Data model and problem statement
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Figure 1: considered scenario (left) and calibrator assumptions (right)

1. Model of the covariance matrix
•The scenario corresponding to Figure 1 (left) is considered, i.e., the antennas
have directional complex responses and the propagation mediums (mainly the
ionosphere) cause different shifts for each calibrator position.

• In recent and future interferometers, the observations consist in a perturbed
version of the covariance matrix Rλ of the P antenna signals, which depends
on the wavelength λ, and is given by
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P×P , in which (1)

1.Gλ = diag (gλ) ∈ CP×P models the undirectional antenna gains

2. The steering matrices ADλ are functions of the positions Dλ of Q calibrators

3.Σλ = diag (σλ) represents the real and known real powers of the calibrators

4. The directional amplitude gains toward calibrators are stacked in Mλ =

diag (mλ) ∈ RQ×Q

5.RU

λ
is the covariance matrix of non-calibration sources (background noise)

6.Σn
λ = diag
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σn
λ

�

∈ RQ×Q contains the antenna noise powers

2. Model effects of the wavelength
•We assume that the antennas and source parameters of the covariance matrix
are wavelength dependent. Specifically:
–gλ has smooth variations across wavelength, representing by gλ = Bλα,
where Bλ ∈ RP×KP is a basis and α ∈ CKP is the smooth parameter.

–mλ is proportional to λ−2 and the position shifts are proportional to λ2.
–Calibrators are well separated (see Figure 1, right).

3. Problem statement
•The aim of calibration is the estimation of {gλ,Dλ,mλ,σ

n
λ
}λ∈Λ, from the

J ≥ K sample covariance matrices {R̂λ}λ∈Λ, where Λ represents the set of
the J available wavelengths.

Proposed Parallel Calibration Algorithm

•The proposed algorithm estimates the parameters in an iterative manner:
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•This step considers the following minimization problem

α̂, {ĝλ}λ∈Λ = argmin
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• (2) is reformulated as a consensus problem by use of ADMM [2]

• It minimizes in a parallel manner the augmented Lagrangian
L ({gλ, yλ}λ∈Λ ,α) =

∑

λ∈ΛLλ (gλ, yλ,α), by use of the following updates:
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•This step estimates jointly the positions Dλ and the gains mλ, by reformu-
lating the problem as a sparse problem:
– it substitutes mλ by a large vector m̃λ, that represents the amplitudes for
a large number of positions, and only the values of m̃λ corresponding to
the apparent positions of the calibrators are non-zero elements

– the efficient and parallel procedure to solve the reformulated problem is
based on Distributed Iterative Hard Thresholding [3]

Simulation results

•Realistic simulations are performed in a low Signal-to-Noise Radio scenario.

•The variances of the errors are closed to the Cramèr-Rao bounds, showing
the proposed scheme is statistically efficient and robust to non-calibration
sources.
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